A Segmentation Procedure of Lidar Data by Applying Mixed Parametric and Nonparametric Models

نویسندگان

  • Fabio Crosilla
  • Domenico Visintini
  • Francesco Sepic
چکیده

The paper proposes a segmentation procedure inspired to a robust LIDaR filtering data method recently introduced by the authors. The method is based on the application of a Simultaneous AutoRegressive (SAR) model for describing a trend surface and of an iterative Forward Search (FS) algorithm to detect clusters of non-stationary data. The procedure consists in an automatic process to identify raw clusters of data relating to the geometrical configurations to be segmented with the robust iterative SAR-FS parametric model. The search of homogenous clusters of points is carried out by applying a local polynomial regression algorithm, automatically adapted to the morphological variability of the LIDaR points. The combination of the parametric and nonparametric models in a mixed analytical procedure makes it possible to optimize the efficiency of the segmentation and dramatically reduce the requirements of computational memory and time consuming. Some significant experiments make it possible to evidence the potential of the method proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests

Drop plate technique has a priority and preference compared with the spread plate procedure, because of less time, quantity of media, effort requirement, little incubator space, and less labor intensive. The objective of this research was to compare the accuracy and fidelity of drop plate method vs. spread plate method by parametric and nonparametric statistical tests. For bacterial enumeration...

متن کامل

SUGI 28: Smoothing with SAS(r) PROC MIXED

Mixed models are an extension of regression models that allows for incorporation of random effects. The application of mixed-effects models to practical data analysis has greatly expanded with consequent development of theory and computer software. It also turns out that mixed models are closely related to smoothing. Nonparametric regression models, especially the general smoothing spline model...

متن کامل

Fitting Second-order Models to Mixed Two-level and Four-level Factorial Designs: Is There an Easier Procedure?

Fitting response surface models is usually carried out using statistical packages to solve complicated equations in order to produce the estimates of the model coefficients. This paper proposes a new procedure for fitting response surface models to mixed two-level and four-level factorial designs. New and easier formulae are suggested to calculate the linear, quadratic and the interaction coeff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005